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By making use of the higher order inequalities which were derived on the basis that the electron density 
function in the unit cell of a crystal is non-negative, a generalization is obtained of the formula presently 
used for the tangent of the phase angle of a structure factor. Also derived are probability measures in 
the form of probability distributions and variances to accompany the generalized tangent formula. The 
generalization is based on the fact that because of the non-negativity of the electron density, a structure 
factor is bounded in the complex plane by a circle centered at a point in the complex plane. The location 
of this center is of particular significance, representing the expected value of the structure factor of 
interest, given the values of the structure factors required to compute the central point. Both the radius 
of the bounding circle and its center are expressible as ratios of determinants involving the structure 
factors. Theoretical considerations imply that the restrictiveness of the bound on the structure factor 
of interest increases as the order of the determinants involved increases. Corresponding sign determining 
formulas and probability measures are presented for the centrosymmetric case. 

Introduction 

The investigation of the mathematical consequences of 
the non-negativity of the electron density function led 
to an infinite set of inequalities of increasing order 
among the structure factors (Karle & Hauptman, 
1950). It has been pointed out (Goedkoop, 1950; 
Hauptman & Karle, 1950) that for structure factors 
representing point atoms, the determinants of suffi- 
ciently high order are equal to zero and therefore be- 
come equalities among the structure factors. It is also 
known from the mathematical literature, as pointed 
out by Tsoucaris (1970), that the values of these non- 
negative determinants, scaled to contain unitary struc- 
ture factors as elements, monotonically approach zero 
as the order of the determinants increases. 

It is a remarkable fact that the main phase deter- 
mining formulas in current use, e.g. Zz, the sum 
of angles formula and the tangent formula are con- 
tained in the inequality of only the third order. In view 
of the greater constraints implied by the higher order 
inequalities, it is desirable to consider the development 
of calculations for facilitating their use. Recent inves- 
tigations concerned with deriving phase information 
directly from the high-order determinants have been 
carried out by Tsoucaris (1970). This type of calcula- 
tion involves the use of a large number of known 
phases in a high-order determinant in order to deter- 
mine a most probable set of phase values for a relatively 
small number of reflections. So far the applications 
have been limited to centrosymmetric crystals. In this 
note, an alternative form for the inequalities, one in 
which a single structure factor is bounded within a 
circle centered in the complex plane, will be used to 
arrive at tangent formulas, based on higher order in- 
equalities, which appear to use phase information in a 
more sophisticated fashion than the one presently used. 

To aid in facilitating their use, appropriate probability 
measures will be associated with the tangent formulas. 

Mathematical development 

The quasi-normalized structure factor is defined 

gh = jh ~. fjh exp (2~zih. rj) 

o r  

where 

(1) 

N 

trr.= ~ Z~. (3) 
I----1 

The quantity fib is the atomic scattering factor for the 
j t h  atom in a unit cell containing N atoms, Zj is its 
atomic number and the components of h are the Miller 
indices for a particular reflection. 

A typical inequality representing the infinite set ap- 
propriate to point atoms may be written as the Toeplitz 
form (Karle & Hauptman, 1950), 

~ooo g -  kl ~ -  k2 . . .  g -  h 
gkl ~000 8kl--k, . .gkl-h 

Dm, p(h) = . . . . . . . . . . . . . . . . . . . . . . . . .  >_0 ( 4 )  

O ~ k m - - 2 0 ~ k m -  2 - - k l  . . . .  ~ k m - 2 - - h  (rank N) 
~h ~h- kl . . . . . . .  ~ooo 

The determinant Din, p(h) of order m is formed by com- 
posing the first column with g00o as the first element, 
followed by m - 2  arbitrarily chosen structure factors 
and then finally gh, the structure factor of interest. The 
subscript p labels a particular set of m - 2  vectors 
kl, . . . ,  k i n - 2  such that Din, p ( h )  = Din, k I • • • k i n -  2 ( h )  • In 
practice the magnitudes of the structure factors in the 
first column are generally chosen to be large. Once the 

N 

d~h ~ -- a2 x/2 ~ Zj exp (2zcih. rj) (2) 
I = 1  
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first column is specified, the remainder of the deter- 
minant is readily constructed by first forming the first 
row with the complex conjugates of the elements in the 
first column in the same sequence. Each element in the 
body of the determinant is a structure factor whose 
subscript is the sum of the subscripts of the elements in 
the first row and first column corresponding to the 
row and column of the element of interest. 

The structure factor d°h for a noncentrosymmetric 
reflection is bound by a circle of radius rm.p(h) in the 
complex plane centered about the point Jm. p(h) (Karle 
& Hauptman, 1950), 

I~h-- Jm, p(h)l <_ rm, p(h) (5) 
where 

J,,,. pOa) = A'~, p(h)/Am, p (6) 
and 

_ 1/2 1/2 
I 'm, p ( h )  - -  z ~ l , m , p z ~ 2 . m . p ( h ) / . d ~ m ,  p . (7 )  

The determinant A' is formed from D by omitting the 
first row and last column of D, replacing the element 
gh by zero and multiplying by ( -  1) re=l, 

g k l  gO00 ~ k l  -- k2"  " ~ k l  -- km-- 2 

~'~k2 ~ k 2  -- kl~O00 . . . .  ~ k 2  -- k m -  2 
Am.p(h)=(- 1) m-1 . . . . . . . . . . . . . . . . . . . . . . . . . . .  

g k m - -  2gkm--  2-- k l  . . . . . .  g000 
0 g h - - k l  . . . . . . . . .  g h - k m - - 2  

(8) 
The determinant d is formed from D by omitting the 
first and last rows and columns of D, 

Am, p 

~ k l - - k l  g k l - - k 2  . . . . .  '~kl"-- kin-- 2 
'~k2-- k l  '~kz--k2 . . . . .  g k 2 - - k m - -  2 

S;2 (9) 

The diagonal elements of (9) are evidently g000. The 
determinants A1 and A2 and formed from D by omitting 
the last row and column of D and omitting the first 
row and column of D, respectively, 

~ooo ~ -  kl . . . . . .  g -  kin- 2 
d°kl ~ooo ....... gkl-km- 2 

Al,m, pAz, m,p~II) = ~°k2 ~°k2-- k l  . . . .  ~ °k2_km_  2 

~X'°O00 gk l .  -- k2" " • gkl .  -- h 
G,z- , ,1 ,Goo • . .  ~,~-h 

X ,~k3_ k l  ,~k3 ~ k 2 . . .  ~t'~k3_ h (10) 
. .  . . . . .  . . . .  ° ,  ° . .  . . . .  . 

~h-kl  g h - - k 2  "" • gO00 

A simple manipulation of the inequality (5) can de- 
monstrate its relationship to a general tangent formula. 
The assumption is made that 

d°h OC<Jm, p ( h ) ) p  . (11) 

Algebraic analysis involving expansion of the deter- 

minants and use of the structure factor equations (1) 
or (2) can, in fact, verify this assumption. If we express 

~h--= IGI exp (/Oh) (12) 
and 

Jm,p(h)--IJ,.,p(h)l exp [i0m, p0a)], (13) 

then, from (11) the generalized tangent formula may be 
written, 

~.lJm, p(h)[ sin 0m, p(h) 
P 

tan ~0h ~ -- 21Jm, p(h)l cOS0m,.(h)" (14) 
P 

It is easily determined from equation (6) that the tan- 
gent formula presently used corresponds to the case 
when m = 3. 

It is desirable to associate probability measures with 
the tangent formula (14). In doing so the central limit 
theorem is employed in which it is assumed that the 
expected values of the real and imaginary parts of gh 
are given by the real and imaginary parts of Jm, p(h). 
It is also assumed that the variance of both the real and 
imaginary parts of d°h is equal to 0.5. With these as- 
sumptions, the probability distribution for ~0h can be 
expressed as 

P(~0h) = [2~I0(~)] -1 exp [c~ cos ((Oh--]?)] (15) 
where 

~=  {[YK~, ~Cn) cos 0~,,0012 
P 

+[~/cm.p(h) sin O,,,.p(h)]2} 1/2 , (16) 
P 

/Cm. ,(h) = 21 d°hJm. ,(h)l (17) 

and tan]? is given by the right side o f equation (14). Equa- 
tion (15) is identical in form with equation (3-25) of 
Karle & Karle (1966) and for the case that m =  3, the 
equations are the same except for the unimportant re- 
placement of ado'a2/z by '~ooo-P-i-- o2"~1/2/'¢1~,1. For equal atoms 
both functions become N -1/2. For this special case of 
m = 3, equation (15) is also equivalent to the probability 
formulas (6), (7) and (10) of Cochran (1955). The 
variance formula (3.33) and Fig. 2 of Karle & Karle 
(1966) are applicable with the new definition of c~ in 
equation (16). (Note that a typographical error occurs 
in equation (3.33). The sign before the last term should 
be minus. Fig. 2, however, was computed correctly.) 

For the case of a centrosymmetric crystal, inequality 
(5) implies a bound on the real axis with 

Sgh ~--S~ Jm, v(h) (18) 
P 

where s means 'sign of ' .  The probability that the sign 
of gh is positive is 

P+(h)~_½+½ tanh Igh l~m,  p(h) • (19) 
p 

It is readily seen that for m = 3, and replacement of the 
quasi-normalized structure factors d ~ by the normalized 
structure factors E, equation (18) becomes the ~z 
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relation. For m=3 ,  equation (19) corresponds to the 
one of Cochran & Woolfson (1955). 

Concluding remarks 

In deriving the probability measures, the variances 
used for the real and imaginary parts of the structure 
factor were based on the assumption that the argu- 
ments of the trigonometric terms in the structure factor 
equation were uniformly and independently distributed 
on the interval -7~ to 7r. This is a quite accurate as- 
sumption when the determinant J,,. p(h) is of fairly low 
order, since the known values of the elements in a 
single determinant of low order usually do not limit 
significantly the possible positions of the atoms in the 
unit cell. In view of the fact that the theory presented 
here does not take into account the important questions 
concerning the effects of inaccuracies in the data, it is 
probably desirable to have conservative estimates of 
the variance in the probability formulas (15) and (19), 
especially when m is small. However, the known values 
for the elements of Jm.p(h) do constrain the distribu- 
tions of the trigonometric terms in the structure factor 
equations. When m is large, values of 0-5 for the var- 
iance of the real and imaginary parts of the structure 
factor for noncentrosymmetric crystals and 1.0 for the 
variance of the structure factor for centrosymmetric 
ones are too large. A more accurate measure of the 
variance can be based on the radius of the bounding 

• . ~000, we have circle rm p(h). If we multiply rm p(h) by -1 
the bounding radius which would be obtained if the 
inequalities were based on unitary structure factors, 
in other words the bounding radius for Uh. This radius 
is essentially unity when m is small, except when e.g. 
Uh and Uh-k are very large for m = 3, and approaches 
zero monotonically, with the addition of new structure 
factor information, as m approaches N+2 .  It appar- 
ently possesses the correct properties to represent the 
variance which reasonably should be associated with 
the bounding radius squared. We therefore set 

aZm, p(h) -~ (g~r, , ,  p(h)) 2 (20) 

for centrosymmetric crystals and half this value for non- 
2 centrosymmetric ones. If the variance am, p(h) were to 

be introduced into the probability formulas (15) and 
(19), we would have the following replacement, 

~,,, p(h) --> t~m,p(h)/a2m, p(h). (21) 

The sums in the generalized tangent formula (14) and 
the generalized sign formula (18) are taken over p, each 
p representing a particular set of vectors 
kl,  k2, . . . ,  kin_ 2. It is conceivable that there may be 
some advantage to summing also over m. 

Experience with formulas arising from m=3 ,  has 
shown that it is worthwhile in practice to replace the 
quasi-normalized structure factors d ° by the normalized 
structure factors E. This replacement may also be 
worthwhile in working with the higher order deter- 
minants. 

The inequality (4) would be equally valid if the ele- 
ments were all changed to 1~]2 or Ig] 2 -  1. The rank 
however would change to N ( N - 1 ) + I  or N ( N - 1 ) ,  
respectively. In view of the fact that the quantities 
and r in inequality (5) are given by the ratio of deter- 
minants that differ in order only by unity, it may be 
possible to compute determinants of high enough order 
accurately and rapidly enough to afford a practical 
method for extrapolating experimental intensity data. 
The possibility of extrapolation is also applicable to 
the magnitude and phase information available for 
poorly resolved structures. 

Computer technology has developed by several 
orders of magnitude since 1950 when the general in- 
equalities appeared in the literature. Inasmuch as most 
of the major features of the present direct methods of 
structure analysis are contained in the third order in- 
equality D3. k(h), it seems worthwhile to take advantage 
of the advances in computer technology to determine 
what additional analytical facility the more restrictive 
higher order determinants may offer. 
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